Строение металлов (кристаллическое)
Дисциплина: Химия и физикаТип работы: Реферат
Тема: Строение металлов (кристаллическое)
Федеральное агентство по науке Российской Федерации
Новгородский государственный университет имени Ярослава Мудрого
Кафедра химии и экологии
Реферат по теме
СТРОЕНИЕ МЕТАЛЛОВ
Выполнил:
Студент гр. 6651
Васильев Виталий
Великий Новгород
2007
Содержание
ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ И СПЛАВОВ…………………...…3
КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ………………………………..5
ДЕФЕКТЫ СТРОЕНИЯ КРИСТАЛЛИЧЕСКИХ ТЕЛ…………………………..10
ТОЧЕЧНЫЕ ДЕФЕКТЫ…………………………………………………….10
ЛИНЕЙНЫЕ ДЕФЕКТЫ……………………………………………………12
ПОВЕРХНОСТНЫЕ ДЕФЕКТЫ…………………………………………...18
СПИСОК ЛИТЕРАТУРЫ………………………………………………………….22
ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ И СПЛАВОВ
Металлы и их сплавы повсеместно используются для изготовления конструкций машин, оборудования, инструмента и т. д. Несмотря на широкий круг искусственно созданных материалов (керамики,
клеев), металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать.
В природе металлы встречаются как в чистом виде, так и в рудах, оксидах и солях. В чистом виде встречаются химически устойчивые элементы (Pt, Au, Ag, Cu). Масса наибольшего самородка
меди составляет 420 т, серебра — 13,5 т, золота — 112 кг. Из 111 открытых элементов, представленных в Периодической системе элементов Д. И. Менделеева, 76 являются металлами, Si, Ge, As,
Se, Te — промежуточными между металлами и неметаллами, иногда их называют полуметаллами. Все элементы, расположенные левее мысленной линии, проведенной от бора до астата (от № 5 до № 85)
относятся к металлам, а правее — в основном, к неметаллам. Эта граница недостаточно четко выражена, так как среди элементов, расположенных вблизи границы, находятся и полуметаллы.
Металлические материалы обычно делятся на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы — цветными. Кроме того,
все цветные металлы, применяемые в технике, в свою очередь, делятся на следующие группы:
- легкие металлы Mg, Be, Al, Ti с плотностью до 5 г/см3;
- тяжелые металлы Pb, Mo, Ag, Au, Pt, W, Та, Ir, Os с плотностью, превышающей 10 г/см3;
- легкоплавкие металлы Sn, Pb, Zn с температурой плавления 232; 327; 410 °С
- тугоплавкие металлы W, Mo, Та, Nb с температурой плавления выше, чем у железа (
- благородные металлы Au, Ag, Pt с высокой устойчивостью против коррозии;
- урановые металлы или актиноиды, используемые в атомной технике;
- редкоземельные металлы (РЗМ) — лантаноиды, применяемые для модифицирования стали;
- щелочные и щелочноземельные металлы Na, К, Li, Ca в свободном состоянии применяются в качестве жидкометаллических теплоносителей в атомных реакторах; натрий также используется в
качестве катализатора в производстве искусственного каучука, а литий — для легирования легких и прочных алюминиевых сплавов, применяемых в самолетостроении.
Свойства металлов разнообразны. Ртуть замерзает при температуре минус 38,8 °С, вольфрам выдерживает рабочую температуру до 2000 °С (Т.пл. = + 3420 °С), литий, натрий, калий легче воды,
а иридий и осмий — в 42 раза тяжелее лития. Электропроводность серебра в 130 раз выше, чем у марганца. Вместе с тем металлы имеют характерные общие свойства. К ним относятся:
- высокая пластичность;
- высокие тепло- и электропроводность;
- положительный температурный коэффициент электрического сопротивления, означающий рост сопротивления с повышением температуры и сверхпроводимость многих металлов (около 30) при
температурах, близких к абсолютному нулю;
хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск);
- термоэлектронная эмиссия, т. е. способность к испусканию электронов при нагреве;
кристаллическое строение в твердом состоянии.
КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ
Общее свойство металлов и сплавов — их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристаллической
структуры используют понятие кристаллической решетки, являющейся воображаемой пространственной сеткой с ионами (атомами) в узлах.
Атомно-кристаллическая структура может быть представлена не рядом периодически повторяющихся объемов, а одной элементарной ячейкой. Так называется ячейка, повторяющаяся во всех трех
измерениях. Трансляцией этого наименьшего объема можно полностью воспроизвести структуру кристалла (рис. 1.1).
Рис. 1.1. Кристаллическая решетка
В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены
точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния a, b и c между центрами атомов, находящихся в соседних узлах решетки, называют
параметрами, или периодами решетки. Величина их в металлах порядка 0,1–0,7 нм, размеры элементарных ячеек — 0,2–0,3 нм.
Для однозначного описания элементарной ячейки кристаллической решетки необходимо знание величин параметров a, b, c и углов между ними.
В 1848 г. французский ученый Бравэ показал, что изученные трансляционные структуры и элементы симметрии позволяют выделить 14 типов кристаллических решеток.
На рис. 1.2 показаны три типа элементарных ячеек кристаллических решеток, наиболее характерные для металлов: объемноцентрированная кубическая (ОЦК); гранецентрированная кубическая
(ГЦК) и гексагональная плотноупакованная (ГП), а также схемы упаковки в них атомов.
Рис. 1.2. Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки в них атомов:
а) гранецентрированная кубическая (ГЦК);
б) объемноцентрированная кубическая (ОЦК);
в) гексагональная плотноупакованная (ГП) решетка
В кубической гранецентрированной решетке (ГЦК; А1) атомы расположены в вершинах куба и в центре каждой грани (рис. 1.2, б).
В кубической объемноцентрированной решетке (ОЦК; А2) атомы расположены в вершинах куба, а один атом — в центре его объема (рис. 1.2, а).
В гексагональной плотноупакованной решетке (ГП; А3) атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы (рис. 1.2, в).
Для характеристики кристаллических решеток вводят понятия координационного числа и коэффициента компактности. Координационным числом называется число атомов, находящихся на наиболее
близком и равном расстоянии от данного атома. Для ОЦК решетки координационное число равно 8, для решеток ГЦК и ГП оно составляет 12. Из этого следует, что решетка ОЦК менее компактна, чем
решетки ГЦК и ГП. В решетке ОЦК каждый атом имеет всего 8 ближайших соседей, а в решетках ГЦК и ГП их 12.
Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется значительное свободное пространство.
Плотность кристаллической решетки, т. е. объем, занятый атомами, характеризуется коэффициентом компактности.
Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки:
где R — радиус атома ...