История изучения капиллярных и поверхностных сил

    Дисциплина: Химия и физика
    Тип работы: Реферат
    Тема: История изучения капиллярных и поверхностных сил

    Введение.

    Если стеклянная трубка, столь же узкая внутри, как волос (лат.

    capillus), погру­жа­ется в воду, то жидкость поднимается внутри трубки до высоты боль­шей, чем снаружи. Эффект не мал: высота поднятия около 3 см в трубке с кана­лом в 1

    мм. Это кажущееся нарушение законов гидростатики (открытке кото­рых было достижением науки XVII в.) вызвало на пороге XVIII в. возрастаю­щий ин­терес к капиллярным яв­лениям. Интерес

    был двояким. Во-первых, хоте­лось ви­деть, можно ли охарактеризо­вать поверхности жидкостей и твердых тел некото­рым простым механическим свой­ством, таким, как со­стояние натяжения,

    кото­рое могло бы объяснить наблюдаемые явления. Следовало объяснить, на­при­мер, почему вода в трубке поднимается, тогда как ртуть опускается; почему поднятие воды между параллельными

    пластинами вдвое меньше, чем в трубке с диаметром, равным расстоянию между пластинами; почему поднятие обратно пропор­ционально этому диаметру. Вторая причина инте­реса происходила из

    понимания того, что наблюдались эффекты, которые должны возникать в ре­зультате действия сил ме­жду частицами вещества, и что изучение этих эффек­тов, следовательно, должно дать

    какие-то сведения о таких силах и, возможно, о самих частицах.

    До появления теорий Юнга и Лапласа.

    Первооткрывателем капиллярных явлений считается Леонардо да Винчи

    Leonardo da Vinci

    ). Однако первые аккуратные наблюдения капиллярных яв­лений на трубках и стеклянных пластинках были проделаны

    Фрэнсисом

    Хокс­би в 1709 году

    [1]).

    То, что вещество не является бесконечно делимым и имеет атомную или моле­ку­лярную структуру, было рабочей гипотезой для большинства ученых на­чиная с XVIII в. К концу XIX в., когда

    группа физиков, сторонников позити­ви­стской фило­софии, ука­зала, каким непрямым являлось доказательство суще­ст­вования атомов, на их заявление последовала лишь незначительная

    реакция, и в итоге их возражения не были опроверг­нуты до начала этого столетия. Если в ретроспективе к сомнения ка­жутся нам неосно­вательными, мы должны пом­нить, что почти все, кто

    тогда верил в существование ато­мов, верили также твердо в материальное существование электро­магнитного эфира, а в первой по­ловине XIX в. — часто и теплорода. Тем не менее ученые,

    внесшие наиболь­ший вклад в теорию газов и жидкостей, использовали предположение (обычно в яв­ной форме) о дискретной структуре вещества. Элемен­тарные частицы мате­рии называли

    атомами, или молекулами (например, Лаплас), или просто части­цами (Юнг), но мы бу­дем следовать современным понятиям и упот­реблять слово «молекула» для элементар­ных частиц,

    составляющих газ, жид­кость или твердое тело.

    В начале XIX в. силы, которые могли бы существовать между молекулами, были так же не ясны, как и сами частицы. Единственной силой, в отношении кото­рой не было сомнения, была

    ньютоновская гравитация. Она действует ме­жду небес­ными те­лами и, очевидно, между одним таким телом (Землей) и дру­гим (например, яблоком), имеющим лабораторную массу;

    Кавендиш незадолго до этого показал, что она дейст­вует и между двумя лабораторными массами, а потому предполагалось, что она дейст­вует также между молекулами. В ранних работах по

    жидкостямможно найти массы молекул и плотности масс, входя­щие в уравнения, в которых мы теперь должны писать числа молекул и плотно­сти чисел молекул. В чистой жидкости все молекулы

    имеют одинаковую массу, так что это различие не играет роли. Но еще до 1800 г. было ясно, что понятия о гравитационных силах недостаточно для объясне­ния капиллярных явле­ний и других

    свойств жидкостей. Поднятие жидкости в стек­лянной трубке не зависит от толщины стекла (по данным

    Хоксби

    [DL1]

    , 1709 г.), и, таким образом, только си­лы со стороны молекул в поверхностном слое стекла действуют на молекулы в жидкости. Гравитационные же силы лишь обратно пропорциональны

    квадрату расстояния и, как было известно, действуют свободно через промежуточ­ное ве­щество.

    Природа межмолекулярных сил, отличных от сил тяготения, была весьма неяс­ной, но в измышлениях не было недостатка. Священник-иезуит

    Роджер

    Боскович (

    Ruggero

    Giuseppe

    Boscovich) полагал, что молекулы отталкиваются на очень малых расстояниях, притягиваются при несколько больших расстоя­ниях и затем по мере увеличения рас­стояния

    демонстрируют попеременно от­талкива­ние и притяжение со все уменьшаю­щейся величиной. Его идеи в сле­дующем столетии оказали влияние как на Фарадея, так и на Кельвина, но были слишком

    сложными, чтобы оказаться непосредственно полез­ными для тех, кто занимался теорией капиллярности. По­след­ние благоразумно доволь­ствовались простыми гипотезами.

    Куинк

    (G.H.

    Quincke) поставил эксперименты по определению наибольше­го рас­стояния, на котором действие межмолекулярных сил ощутимо. Он полу­чил, что для различных веществ эти

    расстояния составляют

    ~ 1/20000 часть миллиметра, т.е.

    –6

    см (данные приведены согласно

    [2])

    Джеймс

    Джурин показал, что высота, на которую поднима­ется жидкость, опре­де­ляется верхней частью трубки, которая находится над жидкостью, и не зависит от формы нижней части

    трубки. Он считал, что подня­тие жидкости происходит благо­даря притяжению со стороны внутренней ци­линдрической по­верх­ности трубки, к которой примыкает верхняя поверхность жидкости.

    Исходя из этого, он показал, что поднятие жидкости в трубках из одинакового вещества обратно про­порционально их внутрен­нему радиусу

    [3].

    Клеро был одним из первых, кто показал необхо­ди­мость принятия во вни­мание притяжения между частицами самой жидкости для объяснения капилляр­ных явлений

    [4]. Он, однако, не признавал, что рас­стояния, на которых дейст­вуют эти силы, не­ощу­тимо малы.

    В 1751 г. фон

    Сегнер ввел важную идею по­верхно­стного натяжения по анало­гии с механическим натяжением мембраны в теории уп­ругости

    [5]. Сего­дня понятие поверх­ностного натяжения является зау­рядным, с него обычно на­чинают изучение капилляр­ных сил и поверхностных явлений в учебных заведе­ниях.

    Эта идея стала ключевой в дальнейшем развитии теории. Собственно, тем са­мым был сделан первый шаг в изучении явления — введено феноменологиче­ское понятие, описывающее

    макроскопическое поведение системы. Второй шаг — это вывод феноме­нологических понятий и вычисление значений величин, ис­ходя из мо­лекулярной тео­рии. Этот шаг имеет огромную важность,

    так как яв­ляется проверкой правильности той или иной молекулярной теории.

    В 1802 г. Джон

    Лесли привел первое корректное объяснение подъ­ема жидкости в трубке, рассматривая притяжение между твердым телом и тонким слоем жидкости на его поверхности

    [6]. Он, в отличие от большинства преды­дущих исследователей, не предполагал, что сила этого притяжения на­правлена вверх (непосредственно для под­держания жидкости).

    Напротив, он показал, что притяже­ние всюду нормально к по­верхности твердого тела.

    Прямой эффект притяжения — увеличение давления в слое жидкости, на­ходя­щемся в контакте с твердым телом, так, что давление становится выше, чем внутри жидкости. Результатом этого

    является то, что сл...

    Забрать файл

    Похожие материалы:


    Добавить комментарий
    Старайтесь излагать свои мысли грамотно и лаконично

    Введите код:
    Включите эту картинку для отображения кода безопасности
    обновить, если не виден код



ПИШЕМ УНИКАЛЬНЫЕ РАБОТЫ
Заказывайте напрямую у исполнителя!


© 2006-2016 Все права защищены